Perturbation of convex risk minimization and its application in differential private learning algorithms

نویسندگان

  • Weilin Nie
  • Cheng Wang
چکیده

Convex risk minimization is a commonly used setting in learning theory. In this paper, we firstly give a perturbation analysis for such algorithms, and then we apply this result to differential private learning algorithms. Our analysis needs the objective functions to be strongly convex. This leads to an extension of our previous analysis to the non-differentiable loss functions, when constructing differential private algorithms. Finally, an error analysis is then provided to show the selection for the parameters.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

(Near) Dimension Independent Risk Bounds for Differentially Private Learning

In this paper, we study the problem of differentially private risk minimization where the goal is to provide differentially private algorithms that have small excess risk. In particular we address the following open problem: Is it possible to design computationally efficient differentially private risk minimizers with excess risk bounds that do not explicitly depend on dimensionality (p) and do...

متن کامل

Private Convex Optimization for Empirical Risk Minimization with Applications to High-dimensional Regression

We consider differentially private algorithms for convex empirical risk minimization (ERM). Differential privacy (Dwork et al., 2006b) is a recently introduced notion of privacy which guarantees that an algorithm’s output does not depend on the data of any individual in the dataset. This is crucial in fields that handle sensitive data, such as genomics, collaborative filtering, and economics. O...

متن کامل

Private Convex Empirical Risk Minimization and High-dimensional Regression

We consider differentially private algorithms for convex empirical risk minimization (ERM). Differential privacy (Dwork et al., 2006b) is a recently introduced notion of privacy which guarantees that an algorithm’s output does not depend on the data of any individual in the dataset. This is crucial in fields that handle sensitive data, such as genomics, collaborative filtering, and economics. O...

متن کامل

Differentially Private Empirical Risk Minimization

Privacy-preserving machine learning algorithms are crucial for the increasingly common setting in which personal data, such as medical or financial records, are analyzed. We provide general techniques to produce privacy-preserving approximations of classifiers learned via (regularized) empirical risk minimization (ERM). These algorithms are private under the ε-differential privacy definition du...

متن کامل

Dynamic Privacy For Distributed Machine Learning Over Network

Privacy-preserving distributed machine learning becomes increasingly important due to the recent rapid growth of data. This paper focuses on a class of regularized empirical risk minimization (ERM) machine learning problems, and develops two methods to provide differential privacy to distributed learning algorithms over a network. We first decentralize the learning algorithm using the alternati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017